

TE Part e

ΜΟΝΩΤΙΚΟΙ ΣΩΛΗΝΕΣ

vidoflex* 85 ete Part e class's' \$x20 e5128

Vidoflex®: The superior thermal insulation

Vidoflex® thermal insulation sleeves, sheets and self adhesive tapes are high quality and reliable products with easy application and outstanding performance. **Vidoflex**® products are manufactured by extrusion from a polymeric compound based on synthetic rubber.

The production process molds **Vidoflex**® into a perfect structure of uniform miniature closed cells providing excellent protection against heat loss,

while preventing moisture absorption and water condensation. **Vidoflex®** provides stable low thermal conductivity (lambda coefficient) and superior flexibility.

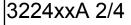
The closed-cell structure is ideal for the control of frost and energy, making **Vidoflex**® extremely effective in eliminating condensation and in reducing energy costs.

Vidoflex® products are used for the insulation of air conditioners, chillers, heating and ventilation systems, industrial and home refrigeration, automotive parts, construction, shipbuilding, sanitation, liquid vessels and many other applications.

Vidoflex[®] for hot water piping systems

Vidoflex® is very effective in reducing heat loss in indoor and outdoor systems. It is also highly efficient in safeguarding against frost as it dramatically delays the time it takes water to reach freezing temperatures.

Vidoflex® is the ideal insulation material for hot water pipes due to the following characteristics: High temperature range Weather resistance Stable low thermal conductivity


Low water absorption and vapor transmission No protective coating necessary (consult with Anavid)

Outstanding flexibility

Vidoflex® for chilled water piping systems

Vidoflex® is applied to cold water pipes to control condensation. **Vidoflex®** insulation products are widely used for chilled water systems, for the following reasons: Low water absorption Stable low thermal conductivity Low water vapor transmission Outstanding flexibility

Physical Data

Test Method

Density	55÷90 K	ig/m³		ASTM D 1667
Thermal Conductivity Coefficient	-20° C 0° C +20° C +50° C	kcal/mh [*] b 0.0265 0.0290 0.0315 0.0343	Wim ¹ k 0.0308 0.0330 0.0340 0.0360	
Temperature Range		+105° C	9.9900	
Water Vapour Diffusion	μ > 5000	1		DIN 52615 + ISO 1663
Ozone Resistance	No crack	íng		ASTM D 1171
Fire Rating	Specifica	tion Compl	iance	 BS 476 Part 7 Class 1; 2 BS 476 Part 6 Class 0 DIN 4102-82 B1 L.N.E NF M1:M2 NT FIRE-036 KLASS-II
Thermal stability	Excellent			C.F.C. Free SFS 4190 CLASS N T FIRE-036 KLASS-II KLASS 2 (NEN 3883)
C.F.C	Free			BRANDKENNZIFFER-5.2
Resistence to Oil and Grease	Excelent			
Water Absorption	1% (Vol 10% (Wt)	,		ASTM D 1056-59T ASTM D 1056-78

VICIOFIEX * APPROVED BY: LLOYD'S REGISTER OF SHIPPING - TYPE APPROVAL CERTIFICATE NO.: 2403-1518 FIW MUNCHEN - NO - U 2,68/97

Recomended Insulation Wall Thickness

(Full calculations to be found in *vidosoft*® software) DEUTSCHES INSTITUT FUR BAUTECHINK ZULASSUNG NO : Z - 23.14-1079 LNE NF-37

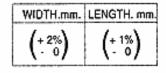
 Ambient
 Pipe Size
 Line Temperature

Ambient	Pipe Size	Line lemperature						
Conditions	Outside Diameter	-40 ⁰ C -40 ⁰ F	0°C 32°F	50°C 122°F	100 ⁰ C 212 ⁰ F			
			Nominal Thick	ness of Insulation	n			
Normal Normal Normal Abnormal	6mm - 16mm O.D. 16mm - 61mm O.D. 61mm - 140mm O.D. 6mm - 140mm O.D	25mm (1*)	6mm (1/4") 13mm (1/2") 19mm (3/4") 25mm (1")	6mm (1/4") 9mm (3/8") 13mm (1/2") 13mm (1/2")	9mm (3/8*) 13mm (1/2*) 19mm (3/4*) 19mm (3/4*)			

Normal Ambient conditions: 20° + 5°C (68° + 9°F) Relative humidity: 60 + 5% Abnormal Ambient conditions: 30° + 5°C (86° + 9°F) Relative humidity: 80 + 5%

The loss of heat from a ducting pipe depends on the difference in temperatures between the fluid in the pipe and the environment, and on the diameter of the pipe. The table is based on calculations designed to reduce heat loss by over 60% with the use of *vidoflex*[®] insulation.

Under Special	MODE								
Conditions	FREE-AIR			UMIN SHEE		PLASTIC SHEET			
Convection Coefficient	9 w/m²∘C		9 w/m²∘C 7 w/m²∘C			С	5 w/m² ⁰Ç		
Relative Humidity	55% 65% 75%		55%	65%	75%	55%	65%	75%	
Min. Wall Thickness [mm]	3.8	6.9	12.4	4.9	8.9	16.0	6.9	12.4	22.4


Dimensions and Tolerances

[۶	PIPE EXT	ERNAL	DIAMET	ER	-	2	8	THICKNESS													
10	co	PPER	ST	EEL.	PLAS	STIC	INTE	RNAL	c		C D		F		н		M		R		Т	
NOME- NAL		JBE		PE	PIP		DIAM	eter		nm	6mm	(1/4")	9mm (3/8")	13mm	(1/2")	19mm	(3/4")	25mr	n (17)	32mm	(114")
INTER-	ł						TOLER	RANCE	3.5	- 6.0	5.0	9.0	8.0 -	13.5	11.0 -	19.0	17.0 -	28.0	22.0			42.0
METER	ins	000.	ins.		ins.	mm.	Min. mm.	Max. mm.	Min.	Max.	Mio. mm	Max. mm.	Min. mm,	Max. mm	Min. mm	Max. mm	Min, mm,	Max.	Min, mm.	Max. mm.	Min, mm	Max. com,
6	1/4'	6.35					6.5	8.5	3.5	5.5	5	7	8	10		—	—	_	<u> </u>	<u> </u>		—
8	\$/ ₁₆ *	7.9					85	10.5	3,5	5.5	5	7	8	10.5		—	—		—	_	—	—
10	3/8"	9.5	¥/3*	10.2		_	10,5	12.5	3,5	5,5	5	7	8	10.5	11	14	17	19	—	_		
12	V_2^*	12.7	_	_	-	12	13	14.5	3,5	5,5	5	7	8	10.5	11	14	17	19	22	22.5		_
14	9/ ₁₆ *	14.3	<i>%</i> *	13.5	—		14.5	16.5	35	5,5	5.5	7,5	8	10.5	11	14	17	195	22	22.5		
15	6/8 .	15.9	_	_	_	' 16	165	18	35	5.5	55	75	85	10,5	11.5	14	17	20	22	26	1	—
17	11/16	17.5	³ /3"	17.2		_	18	19.5	35	5.5	5.5	75	8.5	10,5	11.5	14.5	17	20	22	26	28	34
18	3 <u>1</u> 4"	19.05	I	l	-		195	2	35	5.5	5.5	7.5	8.5	11	11.5	145	17	20	22	26	28	34
22	7/s'	22	¹ /2'	21.3	1	20	225	24.5	35	5.5	6	7.5	8.5	11	11.5	14,5	18	20	23	27	29	35
25	1"	25.4			l	25	35	28	35	5.5	6	7.5	8.5	11	11.5	14.5	18	20	23	27	29	35
27	1%6	27	3/4	26.9	_	—	28	30	35	5,5	6	7.5	9	11	12	15	1B	20	23	27	30	36
28	178	28.6		—	—	_	29	31	3.5	5.5	6	8	9	11	12	15	18	20	23	27	30	36
30	13/16*	30.2					31	33.5	3.5	5.5	6	8	9	1	12	15	18	20	23	27	30	36
35	13/6	34.9	1*	33.7	1	32	36	39	35	5.5	65	8.5	9.5	11.5	12	15	18.5	21	24	28	31	37
42	1 ⁵ /8"	41.3	1%*	42.4	-	40	43	46	3.5	5.5	6.5	8.5	9.5	12	125	15.5	18.5	21	24	28	31	37
45	1 ³ /¿*	44.5	arran 1	I			46	49.5	35	5.5	6.5	8.5	9.5	12	125	15,5	18.5	21	24	28	31	37
48	—	—	11/2"	48,3	and the second		50	ខា	4	6	6.5	8.5	10	12	125	15.5	19	21.5	25	29	32	38
54	21/6*	54	—	1	1	50	53	88	1	-	7	9	10.5	12	13	16	19	21.5	25	29	32	38
57	21/4*	57.1	—	_	—		58.5	821	1				10.5	12	13	16	19	21.5	25	29	32	38
60	2 ³ /8"	60.3	2*	60.3	—	_	62	66.5	—			-	10.5	12	13	16	19	21.5	25	29	32	38
67	2 ⁵ /8*	66.7		—	—	ങ	67	70.5	—	—		_	10.5	12	13	16	19	21.5	25	29	32	38
70	2 ³ /4"	69.85	—	_	—		72	76	—	_	—	_	10,5	13	13	16	19,5	22	26	30	33	39
76	3"	76.20	21/2"	76.1		75	78	82	—		—	_	10.5	13	13.5	16.5	20	22.5	26	30	33	39
80	31/8"	79.4		-	-		82	86	-		—	—	10.5	13	13.5	16.5	20.5	23	26	30	33	39
90	31/2"	88.9	3"	88.9	-	90	91.5	96	-		-	-	10.5	13	13.5	16.5	20.5	23	26	30	33	39
101	4°	101.6	31/2*	101.6	-		104	109			-		11	13.5	14	17	21	24	26	30	34	40
104	4 ³ /8"	104.8	—	—	—	_	106	111	—		-	_	11	135	14	17	21	24	26	30	34	40
108	4%	108			—	110	110	116	—			_	11	135	14	17	22	25	26	30	34	40
114	41/2"	114.3	4"	114.3	—		117	123			—	. —	11	13.5	14	17	22	25	26	30	34	40
127	5*	127		127.0		125	129	136	—		—	_	12	14	14.5	17.5	23	26	27	31	34	40
133		133		133.0		_	135	138				—	12	14	14.5	17.5	23	26	27	31	34	40
140		140	—	139.7		140	141.5	145.5			-	_	12	14	14.5	17.5	23	26	27	31	34	40

vidoflex - Sheet

Tolerances

THICK.mm.	MIN. mm.	MAX. mm.
6	6	7.5
9	9	10.5
13	13	14.5
16	16	18
19	19	22
25	25	28
32	32	35

Self adhesive tape

THICK.mm.	WIDTH, mm.	LENGTH mm.
3.2 (*1)	50 († 2%)	10 (± 1%)

	vidofle	τ. [®] χ	echnical Data				
PHYSICAL PROPERTIES	TESTING INSTITUTES		NORMS & TEST METHODS	RESULTS			
Density	Rubber Research Association	on Ltd.	ASTM D 1667	55- 90 kg/m3			
Temperature Range	"Anavid" Laboratory			-60'C - +105'C			
	File Munchen		Din 52612 / 52613	λ R = 0.039 W/m 'K at +40'C			
Thermal Conductivity	Forschungsinstitut Fur Warmeschutz E.V	Munchen	ASTM C 177 DIN 52 613 ISO / (AS) 2581 - 1975	λ= 0.0308 W/m 'K at - 20'C λ= 0.0360 W/m 'K at + 50'C			
	Osterreichisches Kunststoffin	stitut	B 3800	Teil: 1 (AUS)			
Water Vapour Diffusion	Forschungsinstitut Fur Warmeschutz E.V	Munchen	ISO 1663 + DIN 52615	µ ≥ 5000			
Water Absorption	Rubber Research Association		ASTM D 1056-59T ASTM D 1056-68	1% (vol) max. 10% (vd) max.			
Thermal Stability	"Anavid" Laboratory			Excellent			
Ozone Resistance	Rubber Research Association Ltd.		ASTM D 1171	50 pphm concentration -bent-72 hours: no cracking			
U.V. Resistance (Q-panel)	Rubber Research Association Ltd.		During 4 hours 100% humidity	After 7 days: No cracks After 14 days: No cracks			
Weathering	"Anavid" Laboratory		Outdoor test	 Indicated life span: 3-5 years unpainted 8-10 years painted 			
Cell Structure				Fine closed cell structure			
Resistance to oil and grease	"Anavid" Laboratory			Excellent			
Fire Rating	Warrington Fire (G Research Center	8)	B5 476 part 6 & 7 Building Regulations - £15	Class 1 Class 10"			
	Hannover University (C MPA - NRW (C Rijksuniversiteit Gent		DIN 4102 Teil 1	Class 82 Class 81			
	UNE (VIDOSOL) (F	9	NF P92 - 501	Class M1 - NF			
	Monsanto Loovain La Neuve-Belgium		NF P92 - 501	Class M1			
	Polysar Center Technique-Belgium		NF P92 - 501	Class M1			
	Statens Provningsanstalt (S	5W)	NT Fire: 036,012,002.	Klass II			
	Valtion Teknillinen Tutkimuskeskus (S	ŝF)	SFS 4190	Klass I			
	TNO (N	IL)	NEN 3683	Klasse 2			
	STATNFS (N Bygningstekniske Etat	4)	Fire Test (Certificate No: 2403-1518)	Brannklasse A30-A120			
vidoflex [®] Approved By:	LLOYD'S REGISTER OF SHIPPIN FIW MUNCHEN - NO - U 2.6397 DEUTSCHES INSTITUT FUR BAU LNE NF-37		PPROVAL CERTIFICATE NO.: 2403-1518 VLASSUNG NO : Z - 23.14-1078				

*ANAVID RECOMMENDS TO PROTECT ALL OUTDOOR INSULATED SYSTEM WITH VIDOFINISH OR SIMILAR PAINT All statements and technical information contained herein are based on laboratory test we believe to be reliable, but the accuracy or comfateness is not guaranteed under all circumstances. All flammability rating and specificatios are based on laboratory test and do not describe the performance of these materials in an actual fire situation .Before using Anavid insulation Products the usor has to determine suitability for the intended use,and assumes all responsibility for improper selection.