

#### ΒΑΝΕΣ ΣΥΡΤΗ ΕΛΑΣΤΙΚΗΣ ΕΜΦΡΑΞΗΣ

## Product brochure INFINITY resilient seated gate valve



CHRYSSAFIDIS S.A./ ATHENS: 3 AGRINIOU STR, TAVROS - (+30) 210 4836315-20 / THESSALONIKI: DA12A STR, OT32, BIPE SINDOU - (+30) 2310 754681-4 / www.chryssafidis.com / sales@chryssafidis.gr



# WHO WE ARE

#### TALIS is a leading global provider of premium valves, hydrants and other solutions for water flow control.

With a varied range of products, we offer comprehensive solutions for the entire water cycle, from hydrants to butterfly valves, from knife-gate valves to needle valves. Our experience, innovative technology, global expertise and individual consultation process, form the basis for developing sustainable solutions for the efficient handling of the vital resource "water".

With over nine strong brands and 28 entities in Germany, France, Spain, Portugal, Italy, Great Britain, the Netherlands, Russia, Poland, Israel, China, the Middle East, Mexico, India, South Africa, Singapore, Peru and Brazil, TALIS is the largest supplier of valve technology and first choice when it comes to water valves and services for the whole water cycle.

> TALIS OFFICES/FACTORIES & SALES TALIS SALES **17 SALES & SERVICE OFFICES** INFINITY PRODUCTION CENTER



1945

## 1871

1874 Foundation of

Foundation of ERHARD (D)

Water taps

(D) Modern and market orientated

solutions

SCHMIEDING

1880

Foundation of **BAYARD (FR)** Beer taps and water

fountains

Foundation of LUDWIG FRISCHHUT (D)

« in-house » foundry

Foundation of RAPHAEL

Control

valves

(ISR)

1949

Product and problem-solving competence Sewage industry

Foundation of STRATE (D)

Foundation of **BELGICAST (ES)** 

1957

Valve manufacturer for the naval industry



WE PROVIDE SOLUTIONS. BELGICAST, as a company of TALIS Group, offers the widest range of technical solutions for water control. The aim is to offer a complete range of products and solutions for the efficient handling of the vital resource "water". »







## 1974

Foundation of ATLANTIC PLASTIC (UK)

**Plastic fittings** 

Foundation of UNIJOINT (NL)

1992

Adapters and extensions, pipe couplings, flange adapters and dismantling joints Acquisition by Tyco Waterworks

2001

Acquisition by Triton and creation of TALIS

2010

2011/13 Russia (2011)

Russia (2011) China (2012) Brazil (2013) Middle East (2013) Launch of « Smart-Inside » solutions to make our products smarter

> -South Africa

Peru (2015) Mexico (2015) Joint-Venture with Kc-Val (2016) India (2016) Singapore (2016)

2014 2015/16



## **OUR VISION OF** SUSTAINABLE DEVELOPMENT

PEOPLE WORLDWIDE CURRENTLY DO NOT HAVE ACCESS TO DRINKING WATER



BELGICAST has supported the United Nations Global Compact since 2012. The UN Global Compact is a strategic policy initiative for businesses that are committed to aligning their operations and strategies with ten universally accepted principles in the areas of human rights, labour, environment and anti-corruption.



## There is not enough water to go round, and yet it is one of our most essential resources.

At TALIS we strive to develop highly reliable solutions incorporating the smartest technologies available to improve network performance and save water resources. Beyond this commitment to the excellence of our products, we are also responsible for upholding the highest standards with regard to safety and respect for people and the environment.

#### This is how we can make the world a better place.







# HOW WE WORK

We achieve results by bringing together teams of experts and specialists who travel and encourage the acquisition of knowledge by all stakeholders and interested parties.

We establish research programs to accelerate progress in R&D. We enhance the technical expertise of our employees and customers in the various product ranges we offer, while encouraging networking between specialists and our own customers.

#### LONG-TERM SUPPORT

#### **BEFORE** SALES

- Specification
- Custom solutions
- Design
- Technical studies

#### AFTER SALES

- Commissioning
- Technical assistance
- Manufacturer warranty
- Asset management
- Maintenance contract
- Spare parts

## WE

share and cultivate trust, respect for transparency and honesty in all our actions worldwide.

## YOU

are our customers, our partners, the inspiration behind our innovations and the drivers of our performance.



## TOGETHER

we develop and support the talent that invents and deploys cuttingedge solutions, with a view to improving quality of life for all.

### RESILIENT SEATED GATE VALVES CHRYSSAFIDIS

#### INFINITY

The latest in TALIS's proven range of valves, the INFINITY represents a new generation of resilient seated gate valves [DN40-700]. As well as boasting of the latest technological advances and unique technical features, INFINITY has been 100% designed and manufactured in Europe using high quality materials and the latest manufacturing technologies, to guarantee, to our valuable customers, an extraordinary lifetime, outstanding operability and unique safety features.

#### **FUNCTIONS**

Isolation resilient seated gate valves, with wedge fully encapsulated in elastomer, for ON/OFF duty.

#### **ADVANTAGES**

- Low torque: INFINITY and its new wedge and stem technology ensures smooth functionality with outstanding low torque values.
- Longer service life: new guiding system for the wedge with male composite sliding skate in order to easily achieve the 2500 cycles endurance test required by European standards.
- Corrosion resistance: high quality materials. Wide range of coatings available. Threadless bonnet up to DN300 that allows continuous coating.
- Low head loss: clear way and straight bore design from DN40 up to DN600 in order to allow a free path without restriction of the fluid.
- Bubble tight shut off: new wedge design with increased thickness of the elastomer at the sealing areas to improve tightness.



#### **APPLICATIONS**



\* See page 18 for gate valves which are subjected to CE marking according to the European "Pressure Equipment Directive" 2014/68/EU (PED).

#### USES

#### On networks, gate valves can be:

- Used both as part of new works and renovations.
- Installed outside, buried in the ground, in valves' room, or in buildings.

#### The use of gate valves allows user:

- To balance the distribution of water at all points in the mesh network (in open or closed position).
- To isolate control valves, fire hydrants, air valves, pumps, etc. for their maintenance.
- To perform maintenance on the network (isolation of part of the network).
- To stop the flow in the case of failure or pipe incident.
- To drain water tanks or sections of the water network.



#### **CHARACTERISTICS**

- Made of high quality materials according to the relevant standards.
- Clear way and straight bore, so the flow is optimum with minimum head losses.
- Replaceable packing under pressure.
- Bayonet stuffing nut with three O-rings to guarantee the tightness throughout the stem (up to DN300).
- Patented\* three locking tab for bayonet system up to DN300 to avoid self dismantling, leakage and blow up risk.

- Innovative dust guard made of three O-rings integrated into one single piece that protects the valve from floods, salt spray and dust, and ensures full isolation (up to DN300).
- Wedge fully encapsulated in EPDM for a better resistance to corrosion.
- Integral male composite sliding skate as guiding system for easy operation under maximum differential pressure.
- Body bonnet bolts are protected with hot melt glue.
- Rounded surfaces of the body ensure a uniform coating and protection of the highest quality.

#### TECHNICAL DATA

- Nominal Diameter (DN): DN40 to DN700.
- L Body length to EN558: Series 14: short body (F4). Series 15: long body (F5).
- Closing direction:
  Clockwise closing (CC).
  Anticlockwise closing (ACC).
- Nominal Pressure (PN): PN16.
- □ Flange Drilling: PN10 or PN16 according to EN 1092-2.

- Medium Temperature (EN1074-2):
  - Epoxy coating: -10 to 50°C
  - Enamel coating: -10 to 50°C (up to 70°C under request, in the case of EN1171).
- □ Water tightness: Rate A according to EN 12266-1.
- Maximum Velocity:

| PFA/PS | EN1074-2 | EN1171 |
|--------|----------|--------|
| 10 bar | 3 m/s    | 5 m/s  |
| 16 bar | 4 m/s    | 5 m/s  |

- Excellent corrosion resistance thanks to the fully coated bonnet (not threads) and the epoxy powder coating.
- L Stem in stainless steel.
- Shell designed to withstand 64 bar (VdS type).
- Maintenance free.
- Prepared for actuator version available.
- Approved by major organizations worldwide for drinking water.
- □ In conformity with European standard EN 1074-2 and EN 1171.
- L 100% tested acc. to EN 12166-1 standard.

(\*) List of the countries on request.

#### <u>APPROVALS</u>

DVGW, NF, ACS, KIWA, OVGW, WRAS, VdS, ....

#### **OPTIONS/VARIANTS**

- └── GSK approved, epoxy 300 microns mini, others ...
- Full enamel coating.
- L Electric actuator, Pneumatic/ Hydraulic cylinder, others ...
- Visual mechanical position indicator with optional electrical limit switch.
- Configuration for sea water, sewage water and hot water.
- L Valve complying to BS5163 type A or B.
- Wedge fully encapsulated in NBR or hot potable water approved EPDM (up to 70°C).
- $\hdots$  Bolts in stainless steel A2 or A4.
- Accessories (handwheel, captop, stem extension, others ...).



∟ OPERABILITY ∟ SAFETY





FOR ENAMELED VERSION, THE VALVE INTEGRATES AN EDGE PROTECTION (1) PLACED ALL AROUND BETWEEN THE BODY AND THE BONNET.

#### TECHNICAL ADVANTAGES



FBR16-0001A-EN



01: Due to our PATENTED\* three locking tab bayonet system, The INFINITY gate valve has no threads, enabling a continuous coating and therefore avoiding corrosion problems.

Moreover, it is easy to remove the stuffing nut, with the valve under pressure and fully open, in order to change the O-ring.

\* List of the countries on request.



04: Stem and collar made in one piece in stainless steel for better resistance to axial load and to withstand higher operating torques. A polyamid washer (1) placed under the collar allows to reduce friction torque and protect coating inside the Bonnet.



**02:** Free wedge nut, **reduces the stem bending forces** and at the same time enables it to be easily replaced.



**05:** Our three locking tab for bayonet system prevents selfdismantling, caused mainly by over-torque, and therefore avoids leakage. Also **prevents incidents and ensures the safety of all personnel on site.** 



03: The more compact new cap, reduces the water retention areas in order to reduce the risk of bacterial growth.



**06:** Dust guard integrating three O-ring shape, **prohibiting the introduction of foreign** bodies at the stem.



07: Male guiding system with composite sliding skate (1) reduces the wear of the wedge against the body, allowing a smooth functionality and a longer life time of the valve. Furthermore, the increased thickness of the elastomer at the sealing areas improves product resilience to the usual small impurities encountered in networks.



**08: Triple seal at the operating stem** to ensure tightness with the test of time (2500 cycles).



09: Our new male composite sliding skate technology minimizes the wedge friction against the body ensuring a low operating torque even under high differential pressure and preventing damage or corrosion generated by the friction.





The INFINITY resilient seated gate valve has been designed with even more rounded surfaces and more ergonomic shapes that allow more uniform coating and ensure protection of the highest quality.

#### └ Corrosion protection with powder epoxy

BELGICAST valves are protected with epoxy powder both internally and externally, both the bonnet and the body in a continuous manner, as the model INFINITY with patented bayonet nut has no threads, thus ensuring complete corrosion protection.

The epoxy powder used by BELGICAST is approved for use with potable water by the most prestigious institutions worldwide. Moreover, BELGICAST painting

facilities are approved according to GSK standard (RAL Quality Mark). If you need your valves coated according to this process, please do not hesitate to enquire.



#### **TEMPERATURES**

Depending on the applied anticorrosive coating, the INFINITY gate valve is suitable for the following continuous operating temperatures:

- └─ Epoxy powder protection: -10 °C to 50°C.
- └─ Enamel protection: -10 °C to 50°C (70°C under request).



#### Permanent protection with enamel

Optionally, BELGICAST can manufacture gate valves completely enamelled. Vitreous enamel is highly resistant to corrosion, abrasion, sunlight and sedimentation due to its low porosity and smooth surface. The enamel is vitrified at 720° C and forms a perfect and permanent bond at the foundry.

BELGICAST's extensive experience in the manufacture of gate valves, together with modern enamel equipment, allows production of the highest quality.



VERSION WITH ENAMEL COATING













#### VALVE TESTING ACCORDING TO EN 12266-1 - EN 1074

#### Testing pressures

- Shell tightness: 1.5 times the allowable pressure at room temperature.
- Seat tightness: 1.1 times the allowable pressure at room temperature.

#### Minimum test duration (in seconds)

| Nominal diameter DN             | Shell | Seat |
|---------------------------------|-------|------|
| Up to DN50 included             | 15    | 15   |
| From DN65 up to DN150 included  | 60    | 60   |
| From DN200 up to DN300 included | 120   | 120  |
| DN350 and above                 | 300   | 120  |

#### 📙 Maximum allowable seat leakage

The criterion for seat leakage of BELGICAST resilient seated gate valves is Rate A: no visually detectable leakage for the duration of the test ("zero drops").

#### L Quality control

- 100% of BELGICAST resilient seated gate valves are tested according to EN 12266-1, DIN 3230, or as per customer requirements.
- According to EN 1074 (2,500 cycles endurance resistance).

TBR16-0001A-EN

#### MATERIALS & DIMENSIONS

<u>F4/F5 - DN40/300 - PN10/16</u>



| ltem | Description                  | N°     | Material                    | Standard    |
|------|------------------------------|--------|-----------------------------|-------------|
| 1    | Body                         | 1      | EN-GJS-500-7 <sup>2)</sup>  | EN 1563     |
| 2    | Bonnet                       | 1      | EN-GJS-500-7 <sup>2)</sup>  | EN 1563     |
| 3    | Wedge                        | 1      | EN-GJS-500-7                | EN 1563     |
| 4    | Wedge coating                | 1      | EPDM 1)                     | EN 681-1    |
| 5    | Stem                         | 1      | 1.4021                      | EN 10088    |
| 6    | Wedge lock nut               | 1      | Copper alloy CW617N         | EN 12165    |
| 7    | Body-bonnet gasket           | 1      | EPDM 1)                     | EN 681-1    |
| 8    | Stem washer                  | 1      | РОМ                         | -           |
| 9    | 0-ring (stem)                | 1      | EPDM 1)                     | EN 681-1    |
| 10   | Stuffing nut (bayonet)       | 1      | Al-br CW307G                | EN 12165    |
| 11   | O-ring (stuffung nut)        | 2      | NBR                         | ASTM D2000  |
| 12   | O-ring (stuffing nut/bonnet) | 1      | NBR                         | ASTM D2000  |
| 13   | Body bonnet bolting          | acc/DN | Steel 12.9 Geomet coated    | EN IS0898-1 |
| 14   | Dust guard                   | 1      | EPDM                        | EN 681-1    |
| 15   | Handwheel                    | 1      | Stamped steel <sup>3)</sup> | -           |
| 16   | Handwheel bolting            | 1      | 1.4301                      | EN 10088    |
| 17   | Handwheel washer             | 1      | 1.4301                      | EN 10088    |
| 18   | Square cap                   | 1      | EN-GJS-500-7 <sup>3)</sup>  | EN 1563     |
| 19   | Square cap bolting           | 1      | Steel 8.8 Geomet coated     | EN IS0898-1 |
| 20   | Square cap plug              | 1      | Lupolen                     | -           |
| 21   | Wedge sliding skate 4)       | 2      | PPS+40%GF                   | -           |
| 22   | Locking tabs                 | 3      | Pa6+30%GF                   | -           |

1) or NBR, depending on the approval and on the application. 2) blue coating (Ral 5015) with epoxy powder. 3) black epoxy coating. 4) DN40/50 without wedge sliding skates.

|   |      |            | EN         | 1092-2 PM  | 110               | EN         | 1092-2 PI  | N16               | EN 558 ([        | )IN 3202)        |           |           |             | No. of               | Weigł    | nt (kg)  |
|---|------|------------|------------|------------|-------------------|------------|------------|-------------------|------------------|------------------|-----------|-----------|-------------|----------------------|----------|----------|
|   | DN   | øD<br>(mm) | øK<br>(mm) | øG<br>(mm) | n <sup>o</sup> xd | øK<br>(mm) | øG<br>(mm) | n <sup>o</sup> xd | S14 (F4)<br>(mm) | S15 (F5)<br>(mm) | H<br>(mm) | L<br>(mm) | øD1<br>(mm) | turns<br>for closing | S14 (F4) | S15 (F5) |
|   | 40   | 150        | 110        | 84         | 4x19              | 110        | 84         | 4x19              | 140              | 240              | 170       | 75        | 150         | 11,5                 | 6,7      | 7,3      |
|   | 50   | 165        | 125        | 99         | 4x19              | 125        | 99         | 4x19              | 150              | 250              | 184,5     | 83        | 150         | 14                   | 8,3      | 8,8      |
|   | 65*  | 185        | 145        | 118        | 4x19              | 145        | 118        | 4x19              | 170              | 270              | 227       | 93        | 150         | 15                   | 12,3     | 13       |
|   | 80** | 200        | 160        | 132        | 8x19              | 160        | 132        | 8x19              | 180              | 280              | 250       | 100       | 200         | 18                   | 13,7     | 14,9     |
|   | 100  | 220        | 180        | 156        | 8x19              | 180        | 156        | 8x19              | 190              | 300              | 287       | 110       | 200         | 21,5                 | 16,4     | 17,9     |
|   | 125  | 250        | 210        | 184        | 8x19              | 210        | 184        | 8x19              | 200              | 325              | 324       | 125       | 300         | 27                   | 22,5     | 25,2     |
|   | 150  | 285        | 240        | 211        | 8x23              | 240        | 211        | 8x23              | 210              | 350              | 368       | 143       | 300         | 32                   | 27,2     | 30,6     |
|   | 200  | 340        | 295        | 266        | 8x23              | 295        | 266        | 12x23             | 230              | 400              | 450       | 170       | 400         | 41,5                 | 46,9     | 54,2     |
| - | 250  | 400        | 350        | 319        | 12x23             | 355        | 319        | 12x28             | 250              | 450              | 546       | 200       | 400         | 43                   | 69,5     | 78,8     |
|   | 300  | 455        | 400        | 370        | 12x23             | 410        | 370        | 12x28             | 270              | 500              | 621       | 228       | 500         | 51                   | 96,5     | 114,5    |

\* DN60 drilling on request. \*\* DN80 with 4 holes drilling on request.

MATERIALS & DIMENSIONS



#### <u>F4/F5 - DN40/300 - PN10/16</u>





**C**TALIS 13



<u>F4/F5 - DN350/700 - PN10/16</u>



| ltem | Description                        | N°     | Material                    | Standard    |
|------|------------------------------------|--------|-----------------------------|-------------|
| 1    | Body                               | 1      | EN-GJS-500-7 <sup>2)</sup>  | EN 1563     |
| 2    | Bonnet                             | 1      | EN-GJS-500-7 <sup>2)</sup>  | EN 1563     |
| 3    | Wedge                              | 1      | EN-GJS-500-7                | EN 1563     |
| 4    | Wedge coating                      | 1      | EPDM 1)                     | EN 681-1    |
| 5    | Stem                               | 1      | 1.4021                      | EN 10088    |
| 6    | Wedge lock nut                     | 1      | Copper alloy CW617N         | EN 12165    |
| 7    | Body bonnet gasket                 | 1      | EPDM 1)                     | EN 681-1    |
| 8    | Lower packing bushing              | 1      | РОМ                         | -           |
| 9    | O-ring (stem)                      | 2      | EPDM 1)                     | EN 681-1    |
| 10   | Upper packing bushing              | 1      | РОМ                         | -           |
| 11   | O-ring int (upper packing bushing) | 2      | NBR                         | ASTM D2000  |
| 12   | O-ring ext (upper packing bushing) | 2      | NBR                         | ASTM D2000  |
| 13   | Body bonnet bolt                   | acc/DN | Steel 10.9 Geomet coated    | EN ISO898-1 |
| 14   | Dust guard                         | 1      | EPDM                        | EN 681-1    |
| 15   | Handwheel                          | 1      | Stamped steel <sup>3)</sup> | -           |
| 16   | Handwheel bolt                     | 1      | 1.4301                      | EN 10088    |
| 17   | Handwheel washer                   | 1      | 1.4301                      | EN 10088    |
| 18   | Square cap                         | 1      | EN-GJS-500-7 <sup>3)</sup>  | EN 1563     |
| 19   | Square cap bolt                    | 1      | Steel 8.8 Geomet coated     | EN ISO898-1 |
| 20   | Square cap plug                    | 1      | Lupolen                     | -           |
| 21   | Wedge sliding skate                | 2      | PPS+40%GF                   | -           |
| 22   | Upper bonnet                       | 1      | EN-GJS-500-7 <sup>2)</sup>  | EN 1563     |
| 23   | O-ring (lower packing bushing)     | 1      | EPDM 1)                     | EN 681-1    |
| 24   | Axial ball bearing                 | 2      | -                           | -           |
| 25   | Bonnet-upper bonnet O-ring         | 1      | NBR                         | ASTM D2000  |
| 26   | Bonnet-upper bonnet bolt           | 4      | Steel 8.8 Geomet coated     | EN ISO898-1 |
| 27   | Eyebolt                            | 2      | Steel 8.8 JS500 coated      | EN IS0898-1 |
| 28   | Cotter                             | 1      | Steel 8.8                   | EN IS0898-1 |

1) or NBR, depending on the approval and on the application. 2) blue coating (Ral 5015) with epoxy powder. 3) black epoxy coating.

|      |            | EN 1003    | 2 DN 10    |         |            | EN 100     | 2 2 DN 14  |         |                  | DIN 2202)        |      | L      |           |     |             |      | Weight kg |              |          |  |     |          |
|------|------------|------------|------------|---------|------------|------------|------------|---------|------------------|------------------|------|--------|-----------|-----|-------------|------|-----------|--------------|----------|--|-----|----------|
| DN   |            | EIN TU92   | 2 FIN IU   |         |            | EN TU72    | 2-2 FN 10  |         | EN 330 (         | DIN JZUZJ        | H    |        | L<br>(mm) | H L |             |      | øD1       | No. of turns | S14 (F4) |  | S15 | S15 (F5) |
|      | øD<br>(mm) | øK<br>(mm) | øG<br>(mm) | no. x d | øD<br>(mm) | øK<br>(mm) | øG<br>(mm) | no. x d | S14 (F4)<br>(mm) | S15 (F5)<br>(mm) |      |        |           | ()  | Tor closing | PN10 | PN16      | PN10         | PN16     |  |     |          |
| 350  | 520        | 460        | 429        | 16x23   | 520        | 470        | 429        | 16x28   | 290              | 550              | 812  | 260    | 506       | 600 | 51          | 190  | 190       | 213          | 213      |  |     |          |
| 400  | 580        | 515        | 480        | 16x28   | 580        | 525        | 480        | 16x31   | 310              | 600              | 905  | 290    | 606       | 800 | 58          | 274  | 274       | 311          | 311      |  |     |          |
| 450  | 640        | 565        | 530        | 20x28   | 640        | 585        | 548        | 20x31   | 330              | 650              | 1002 | 320    | 672       | 800 | 65          | 310  | 309       | 363          | 362      |  |     |          |
| 500  | 715        | 620        | 582        | 20x28   | 715        | 650        | 609        | 20x34   | 350              | 700              | 1054 | 358    | 748       | 800 | 72          | 398  | 396       | 445          | 443      |  |     |          |
| 600  | 780        | 725        | 682        | 20x31   | 840        | 770        | 720        | 20x37   | 390              | 800              | 1285 | 420**  | 955       | 800 | 87          | 553  | 669       | 660          | 775      |  |     |          |
| 700* | 895        | 840        | 794        | 24x31   | 910        | 840        | 794        | 24x37   | -                | 900              | 1285 | 455*** | 955       | 800 | 87          | -    | -         | 815          | 975      |  |     |          |

CHRYSSAFIDIS

Reduced bore of 600 mm. Valves produced from DN600/S14 with flanged conical adapters bolted on each side.
 L = 390 mm for DN600 PN10.
 L = 448 mm for DN700 PN10.



#### MATERIALS & DIMENSIONS

#### <u>F4/F5 - DN350/600 - PN10/16</u>





#### **ACTUATION METHODS**



TALIS offers a wide variety of actuation methods that will allow to choose the best option for each installation. The actuation can be made manually or by means of an electrical actuator with or without a gearbox. Also, we offer solutions for buried installations. Pneumatically actuated gate valves with a special design are also available for those installations where speed of actuation is a priority.



#### MANUAL ACTUATION

□ In most cases, resilient seated gate valves are operated manually by means of a handwheel or a square cap top, using a T-key. TALIS offers handwheels with the right dimensions, according to the DN and operating torque. Our standard handwheels are made of pressed steel and we also offer ductile iron as an option. Regarding square cap tops, our products comply with the different national practices and standards.

A cap plug (1), inserted inside, indicates the closing direction. Blue color for clockwise closing direction, red color for anti-clockwise closing direction.



#### **BURIED INSTALLATIONS**

☐ One special case of manual actuation occurs when the valve is buried and the actuation has to be done from the surface. For those cases special stem extensions, fixed or telescopic, are offered to fit with different national practices and standards. We can offer customised solutions for each country when requested. For example, TALIS offers adapters to fit plastic or casting pipes for the French market and stem extensions according to GW 336 for the German market.



#### **ELECTRICAL ACTUATION**

Another option is to operate the gate valve by means of an electric actuator. This solution also offers the possibility of installing a remote control, that allows the final user to monitor the operations of the valves. Special versions of the gate valves prepared for the actuator are equipped with top flanges according to ISO 5210. Actuators from different suppliers can be installed on this standard flange, which gives the customer the freedom to choose their actuator. TALIS can provide the operating torgues of the gate valves as well as guidance in choosing the right actuator for each DN.

| DN                               | From DN40 to<br>DN200 included | From DN250 to<br>DN500 included | DN600 |
|----------------------------------|--------------------------------|---------------------------------|-------|
| Connecting<br>flange<br>ISO 5210 | F10                            | F14                             | F16   |

#### INSTALLATION AND OPERATION INSTRUCTIONS





#### **GOOD TO KNOW** BEFORE INSTALLATION

#### 🗆 Storage

- Leave the rubber wedge slightly open: if it is closed completely, the rubber suffers unnecessary compression. Remove the flange cover just before the installation.
- The gate valves should preferably be stored under cover. A long storage under extreme weather conditions can cause alterations of the coating and seals.

#### L Assembly in pipe

- The assembly of the valve in the pipe is independent of the flow direction.
- When connecting the valve to the pipe, avoid the transmission of stress from the pipe to the valve body. For that, any pipe or pipe sections or valve not yet finally clamped in place must be provisionally supported to prevent abnormal stress on one or both sides of the valve.
- Tighten screws gradually in a star-shaped pattern, respecting the tightening torques.
- Once the valve is assembled, the threads of the bolts/rods should be greased with a graphite based waterproof grease (MOLYCOTE or similar) to prevent corrosion and facilitate subsequent dismantling operations.

#### Operation

- Each valve must be operated in respect of the operating torque by means of a handwheel or a square cap top, in the latter case a purpose-designed operating key must be used. Do not use the valves for regulating mode.
- Do not use the valves with EPDM rubber with gaseous fluids such as propane, butane, natural gas and also with hydrocarbons fluids like petrol, diesel, ...

#### RECOMMENDED POSITIONS





#### EUROPEAN DIRECTIVE

**European directive 2014/68/EU (PED)** must be respected in all the countries of the European Union for all equipment under pressure. Valves which are subjected to this European directive are the object of a «CE» marking and also a CE declaration of conformity.

Are excluded from the scope of this directive the networks for the supply, distribution and discharge of water and associated equipment and headraces such as penstocks, pressure tunnels, pressure shafts for hydroelectric installations and their related specific accessories. In this context:

- 🗀 "water" means: potable water, waste water and effluent, and sewage,
- "Networks and associated equipment" means: complete systems for the supply distribution and discharge of water. They extend up to the point of use in buildings, industrial sites and plants, and include equipment closely related to these networks such as water meter and line valves. Pressure vessels, such as expansion vessels, however are not considered to be part of such 'networks and associated equipment' and are therefore not excluded.

Within the scope of the directive, the requirements on resilient seated gate valves are given in the table beside in the case of liquid from group 2.

For the gate valves which are subjected to "CE" marking (see table beside), the document of "CE" declaration of conformity is available on request.

| DN  | PS MAX<br>(bar) | Fluid<br>group | Fluid<br>Type  | CATEGORY     | CE<br>Marking |
|-----|-----------------|----------------|----------------|--------------|---------------|
| 40  | 16              | 2              |                | Art 4, Par 3 | n.a.*         |
| 50  | 16              | 2              |                | Art 4, Par 3 | n.a.*         |
| 60  | 16              | 2              |                | Art 4, Par 3 | n.a.*         |
| 65  | 16              | 2              |                | Art 4, Par 3 | n.a.*         |
| 80  | 16              | 2              |                | Art 4, Par 3 | n.a.*         |
| 100 | 16              | 2              |                | Art 4, Par 3 | n.a.*         |
| 125 | 16              | 2              | Liquid houing  | Art 4, Par 3 | n.a.*         |
| 150 | 16              | 2              | vapor pressure | Art 4, Par 3 | n.a.*         |
| 200 | 16              | 2              | max at 1513    | Art 4, Par 3 | n.a.*         |
| 250 | 16              | 2              | mbar, at 70°C  | Art 4, Par 3 | n.a.*         |
| 300 | 16              | 2              | IIIax.         | Art 4, Par 3 | n.a.*         |
| 350 | 16              | 2              |                | Cat 1        | Yes           |
| 400 | 16              | 2              |                | Cat 1        | Yes           |
| 450 | 16              | 2              |                | Cat 1        | Yes           |
| 500 | 16              | 2              |                | Cat 1        | Yes           |
| 600 | 16              | 2              |                | Cat 1        | Yes           |
| 700 | 16              | 2              |                | Cat 1        | Yes           |

(\*): according to the max working pressure defined, max temperature defined, and fluid group defined, the "CE marking" is not necessary for DN40 to 300 in the present case.

#### REFERENCE LIST

#### WATER SUPPLY DISTRIBUTION

| Project                                            | Country      | Year      |
|----------------------------------------------------|--------------|-----------|
| The reconstruction of Entuziastov highway – Moscow | Russia       | 2012-2013 |
| Ruwais Housing Complex (Abu Dhabi)                 | UAE          | 2012      |
| Khalifa port                                       | UAE          | 2012      |
| Pal Tree at Jebel Ali                              | UAE          | 2012      |
| New Sanitary Waste Lift Station                    | Saudi Arabia | 2012      |
| Peravia Acueducto / aqueduct                       | Dominic Rep  | 2012      |
| Dynamo Stadium – Moscow                            | Russia       | 2012      |
| Olympic objects in Imerety lowland - Sochi         | Russia       | 2011-2012 |
| Abu Dhabi International airport                    | UAE          | 2011      |
| Vodokanal – Taraza                                 | Kazakhstan   | 2011      |
| Mokry Dwor proejct                                 | Poland       | 2011      |
| Main water pipelines . Irkutsk                     | Russia       | 2010-2012 |
| Sochi, main pipeline Dn500 near Mzyta river        | Russia       | 2010      |
| Tifert (Tunisian Indian fertiliser)                | Tunisia      | 2010      |
| Pushkin deposit – Vkadivostok (i.Russkiy)          | Russia       | 2010      |
| National Water Annual Contract                     | Saudi Arabia | 2010      |
| Kamala-1 pumping station and distr.                | Duccio       | 2010      |
| Network – Krasnoyarsk                              | RUSSIA       | 2010      |
| Jebel Ali Airport                                  | UAE          | 2009      |
| Dubai Crescent                                     | UAE          | 2009      |
| The Palm Deira (Dubai)                             | UAE          | 2009      |









#### SEWAGE & TREATMENT



| Project                                               | Country      | Year      |
|-------------------------------------------------------|--------------|-----------|
| PTAR El Bello / Wastewater Treatment Plant            | Colombia     | 2014      |
| Makkah Project                                        | KSA          | 2013      |
| Darsait Waste Water Treatment Plant                   | Oman         | 2013      |
| Atotonilco Planta Tratamiento / Water Treatment Plant | Mexico       | 2012      |
| 6th October WTP                                       | Egypt        | 2012      |
| Arroyo Valenoso Waste Water Treatment Plant           | Spain        | 2012      |
| Najmat Abu Dhabi Sewage Lifting Station               | UAE          | 2012      |
| Sanitary Waste Water Pumping Station                  | Saudi Arabia | 2012      |
| Sewage pumping station Lubertsy-2 – Moscow -          | Russia       | 2012      |
| Vodokanal (Astana SU Arnasy) - Main sewage pumping    | Kazakhetan   | 2011_2012 |
| station-                                              | Nazakiistaii | 2011-2012 |
| Arroyo Culebro Waste Water treatment Plant            | Spain        | 2011      |
| Ciudad Real Waste Water Treatment Plant               | Spain        | 2011      |
| Madrid-Valmayor Planta Tratamiento                    | Spain        | 2010      |
| Arroyo Quiñones Waste Water treatment Plant           | Spain        | 2010      |
| Tomelloso Waste Water Treatment Plant                 | Spain        | 2010      |
| Gava Waste Water Treatment Plant                      | Spain        | 2010      |
| Nopwasd II Waste Water Treatment Plant (CAPW)         | Egypt        | 2010      |
| Cairo Airport New Terminal 3                          | Egypt        | 2009      |
| Rejas- Madrid Waste Water Treatment Plant             | Spain        | 2009      |
| Alejandria East Waste Water Treatment Plant (CAPW)    | Egypt        | 2009      |
| Ibiza Waste Water treatment Plant                     | Spain        | 2009      |
| Madrid-Almoguera Planta de Tratamiento                | Spain        | 2008      |
| Benquerencia Water treatment Plant                    | Spain        | 2008      |
| Paterna Water treatment Plant                         | Spain        | 2008      |
| La Gavia-Madrid Waste Water Treatment Plant           | Spain        | 2008      |
| Epele Water treatment Plant                           | Spain        | 2007      |
| MGUP "Mosvodokanal" Cherkizovskaya sewage pumping st  | Russia       | 2007      |
| Gabal El Asfar Waste Water Treatment Plant (CAPW)     | Egypt        | 2006      |
| La Ranilla- Waste Water Treatment Plant               | Spain        | 2006      |
| Saint Petersburg South-west sewage treatment plant    | Russia       | 2005      |









| Project                                         | Country | Year |
|-------------------------------------------------|---------|------|
| Al Ain Irrigation Project                       | UAE     | 2011 |
| Upgrading of Salam Street – Irrigation works    | UAE     | 2010 |
| Lleida-Segarra Garrigues Regadío / Irrigation   | Spain   | 2008 |
| Canal de Navarra / Navarra Channel              | Spain   | 2008 |
| Castejón Regadío / Irrigation project           | Spain   | 2005 |
| La Rioja-Najerilla Regadío / Irrigation Project | Spain   | 2005 |
| Bozova (45,000 ha) Regadío / Irrigation         | Turkey  | 2002 |



TBR16-0001A-EN

CHRYSSAFIDIS S.A./ ATHENS: 3 AGRINIOU STR, TAVROS - (+30) 210 4836315-20 / THESSALONIKI: DA12A STR, OT32, BIPE SINDOU - (+30) 2310 754681-4 / www.chryssafidis.com / sales@chryssafid s.gr The technical data and performance may be modified without prior notice depending on the technical advances.